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Annexure A

Final Report

Title: Quantum Phases of spin-1 bosonicatoms in

Bichromatic Superlattices

1. Cluster Mean Field Theory applied to Spin-1 Bose Hubbard Model:Zero

Temperature

1.1. Introduction

In the experiments of optical lattice BEC of atoms is prepared in Magneto-Optical Traps

(MOT) resulting in freezing of spin degrees of freedom. When traps are purely optical,

Alkali atoms like 87Rb, 23Na and 30K having hyperfine spin F = 1, have spin degrees of

freedom, and thus, the interaction between atoms is spin dependent. The interaction is

ferromagnetic (e.g. 87Rb) or anti-ferromagnetic (e.g 23Na) depending upon scattering

lengths of singlet and quintuplet channels[1]. This interaction not only modifies the

nature of the phase diagram but also allows the study of superfluidity and magnetism.

A model which describes such spin full Bosons in an optical lattice is spin-1 Bose

Hubbard Model defined by

Ĥ = −J
∑
〈k,l〉,σ

(â†k,σâl,σ +H.C) +
U0

2

∑
k

n̂k(n̂k − 1)

+
U2

2

∑
k

(~F 2
k − 2n̂k)− µ

∑
k

n̂k (1)

where bosons with spin projection σ = {−1, 0, 1} can hop between nearest neighboring

pairs of site 〈k, l〉 with amplitude J , â†k,σ(âk,σ) is the boson creation (annihilation)

operator for site k. Total number operator at site k is n̂k =
∑

σ n̂k,σ with n̂k,σ = â†k,σâk,σ.
~Fk = (F x

k , F
y
k , F

z
k ) is the spin operator with Fα

k =
∑

σ,σ′ â†k,σS
α
σ,σ′ âk,σ′ and Sασ,σ′ are the

standard spin-one matrices

Sx =
1√
2

 0 1 0

1 0 1

0 1 0

 , Sy =
i√
2

 0 −1 0

1 0 −1

0 1 0

 and Sz =

 1 0 0

0 0 0

0 0 −1

 .
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Using these matrices in the expression for ~F 2
k , we get

~F 2
k = n̂2

k,1 − 2n̂k,1n̂k,−1 + n̂2
k,−1 + n̂k,1 + n̂k,−1 + 2n̂k,0

+ 2n̂k,0n̂k,1 + 2n̂k,0n̂k,−1 + 2â†k,1â
†
k,−1 + 2â†k,0â

†
k,0âk,1âk,0. (2)

The chemical potential µ controls the boson density. On-site interaction U0 and U2

arises due to the difference in the scattering lengths a0 and a2 of channels S = 0 and

S = 2 respectively and are equal to U0 = 4π~2(a0+2a2)/3M and U2 = 4π~2(a2−a0)/3M
where M is a mass of the atom. For 23Na, a0 = 49.4aB and a2 = 54.7aB with aB as

Bohr radius resulting U2 > 0. Whereas for 87Rb, a0 = (110±4)aB and a2 = (107±4)aB,

so U2 can be negative[1].

Various techniques like mean field methods [2, 3], variational Monte Carlo [4],

analytical [5, 6], Density Matrix Renormalization Group (DMRG) for 1D[7, 8], and

quantum Monte Carlo simulations in 1D [9] and 2D [10] have been used to study this

model. Overall phase diagram at zero temperature shows the MI phase with each

lattice site having commensurate boson filling when repulsion between atoms is large,

and superfluid otherwise. The richness of the phases emerges due to their magnetic

nature, and it depends on the sign and strength of spin-dependent interaction U2. When

the interaction is ferromagnetic, U2 < 0, the superfluid to Mott insulator transition is

continuous. However, for anti-ferromagnetic interactions, U2 > 0, the even density Mott

insulator phase is found to be more stable than the odd density Mott insulator phase.

The superfluid phase is polar in nature and transition to even density Mott insulator

phase is discontinuous due to singlet formation. Mott phase has nematic behavior and a

weakly first-order transition to singlet state is predicted in even density Mott insulator.

Quantum Entanglement[11], an intrinsic phenomenon, plays a vital role in

the quantum phase transitions and can be characterized by calculating bipartite

Entanglement Entropy(EE)[12]. Methods like exact diagonalization[13, 14], density

matrix renormalization group[15, 16], time-evolving block decimation [17], the slave-

boson approach [18], and Monte Carlo simulation [19] have been used to calculate the

von Neumann entropy (i.e., first -order Rényi EE) and the Rényi EE to second-order

in various BH systems. Recently Rényi Entanglement Entropy has been experimentally

measured to characterize SF-MI transitions in the case of spinless bosons[20].

Single site mean field theory, numerically elementary when applied to spin-1 Bose

Hubbard model [3] predicts primary phase diagrams correctly. But it fails to predict

the magnetic nature of the different phases and calculate Entanglement Entropy. It

is also known to overestimate the critical interaction for superfluid to Mott insulator

transition. It is so desired to have a procedure which keeps the simplicity of the mean

field theory but overcome some of its limitations. One such method is the cluster mean

field theory [21], which has been widely used to study phase transitions in various BH

models[22, 20]. This method concentrates on a cluster of sites rather than a single site,

forming a bridge between simple mean field theory and heavy numerical methods like

DMRG and Monte Carlo simulations.
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Below we apply the cluster mean field theory to the spin-1 Bose Hubbard Model

to account for the different phases that originate due to ferromagnetic and anti-

ferromagnetic interactions and then, obtain the phase diagram for the 2D system. Also,

use this CMFT formalism to get the signature of Rényi EE to SF-MI transition in this

model. The CMFT formalism for the Spin-1 BH model is given in the next section,

followed by results and conclusions.

1.2. Model and cluster mean-field formalism

In the cluster mean-field framework, we partitioned the lattice into clusters with NC

number of sites each. Decoupling the clusters from its neighbours using standard mean

field decoupling scheme i.e., â†k,σâl,σ + âk,σâ
†
l,σ ≈ â†k,σψl,σ + âk,σψ

∗
l,σ−ψ∗k,σψl,σ + â†l,σψk,σ +

âl,σψ
∗
k,σ − ψ∗l,σψk,σ where ψk,σ = 〈âk,σ〉 represents the superfluid order parameter with

spin components σ result Hamiltonian (1) is given by

Ĥ =
∑
cluster

Ĥcluster (3)

where

Ĥcluster = −J
Nc∑

<k,l>,σ

(â†k,σâl,σ +H.C) +
U0

2

Nc∑
k

n̂k(n̂k − 1)

+
U2

2

Nc∑
k

(F̂ 2
k − 2n̂k)− µ

Nc∑
k

n̂k

− t
Nc∑
k,σ

′∑
l

(â†k,σψl,σ + âk,σψ
∗
l,σ − ψ∗k,σψl,σ), (4)

where in
∑′

l, l runs over all sites which are nearest neighbor to site k and belongs

to neighboring clusters. We set the energy scale by choosing J = 1, as a result,

all the physical parameters considered are dimensionless. This Hamiltonian is solved

self consistently for the values of ψk,σ using the following procedures. Assuming

initial values for the ψi,σ we first construct the Hamiltonian matrix in Fock’s state

basis |{N1,σ}; {N2,σ}; ...; {NC,σ}〉 ≡ |{N1〉} ⊗ {|N2〉} ⊗ ..., {|NC〉}. Here |{Ni}〉 ≡
|Ni,−1, Ni,0, Ni,1〉 with Ni,σ representing the number of bosons with spin component σ

at site i. We assumes values Ni,−1 +Ni,0 +Ni,1 = 0, 1, 2, ..., Nmax where Nmax is chosen

sufficiently large so that ground state energy is properly converged. We then diagonalize

Hamiltonian matrix to obtain the ground state energy and the wave function given by

|ΨGS〉 =
∑Nmax

N1;N2;...;NC
CN1,N2,...,NC |N1, N2, ..., NC〉. We calculate ψi,σ = 〈ΨGS|âi,σ|ΨGS〉

and solve it self consistently. Homogeneity of lattice makes ψi,σ ≡ ψσ independent of

lattice site. For the superfluid phase at least one value of ψσ is non zero; whereas for

Mott Insulator phase all components are zero and shows density ρ =
∑

σ〈n̂σ〉 as an

integer. Superfluid density is given by ρSF =
∑

σ|ψσ|2.
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The magnetic properties of different phases of model (1) are studied by calculating

the local magnetic moment identifier 〈F 2〉 at a site [1] and the global (or cluster)

magnetic moment identifier 〈F 2
TOT 〉 = 〈

(∑NC
k Fk

)2
〉 . Order parameter which

characterizes Nematic order is

Qk,α,α = 〈F̂ 2
k,α,α −

1

3
F̂ 2
k 〉 (5)

where (α = x, y, z). Spin isotropy exists if Qα,α = 0 for all α and indicate spin anisotropy

(characteristic of the nematic order) if Qα,α 6= 0. When the spin dependent interaction

is antiferromagnetic, the density of singlet pair is given by ρSD = 〈Â†SDÂSD〉 where

singlet creation operator A†SD = 1√
6
(2a†1a

†
−1 − a†0a

†
0). In this study, we choose cluster

sizes of NC = 1, 2 and 4 as shown in Fig. 1 for obtaining the phase diagram.

Figure 1. Clusters of sizes (a) NC = 1, (b) NC = 2 and (c) NC = 4 used for obtaining

the phase diagrams given in Figs. 5 and 8(d). Black solid circles represent sites, with

dashed black lines as hopping of bosons outside cluster approximated using mean field

decoupling. Solid Back lines represent hopping within the cluster treated exactly.

To obtain a signature of the quantum entanglement in various phases of this

model, we calculate bipartite Entanglement Entropy(EE)[12]. Rényi EE is a bipartite

entanglement defined by separating the whole system into two subsystems, and its

second-order form can be measured in experiments. Denoting the two subsystems as A

and B, the nth-order Rényi EE is defined as

Sn[A(B)] =
1

1− n
log[Tr(ρ̂nA(B))], (6)

where ρ̂nA(B) = TrB(A)(ρ̂AB) is the reduced density matrix of subsystem A(B) and ρ̂AB is

the density matrix of the whole system. If the two subsystems are entangled, ignoring

information about one subsystem will result in the other subsystem is being in a mixed

quantum state. In our work here we concentrate on the second order n = 2 Rényi EE,

S2[A(B)] = −log[Tr(ρ2A(B))].

In our cluster mean field treatment, intra-cluster correlations are reserved, and we

consider intra-cluster bipartite entanglement. We calculate this for a cluster size of

NC = 2 to keep both the subsystems consisting of a single site. If subsystem A is one of
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the two sites, then subsystem B is the remaining site. Therefore, the reduced density

matrix for the site A is ρA =
∑

N1N ′
1
(
∑

N2
C∗N1,N2

CN ′
1,N2

)|N1〉〈N ′1|, and we calculate the

second-order Rényi EE S2 for different parameters. Results obtained for both U2 > 0

and U2 < 0 are given below in subsections 1.3 and 1.4 respectively.

1.3. Results:Antiferromagnetic case: U2 > 0

We first consider the anti-ferromagnetic case U2 > 0. Here the superfluid phase is polar

(PSF) which has symmetry [U(1) × S2]/Z2 [3]. Since we have assumed ψσ to be real,

above symmetry allows ψσ only two possible set of values (i) ψ1 = ψ−1 6= 0, ψ0 = 0 or

(ii) ψ1 = ψ−1 = 0, ψ0 6= 0. This behaviour is evident from the figure 2(a) where we

plot SF order parameters ψσ and boson densities ρσ as a function of chemical potential

µ with NC = 2 for the on-site interactions U0 = 21.8 and U2 = 0.03U0. From this figure,

we infer that superfluidity for these parameters is primarily due to bosons with spin

component σ = ±1. In the Fig. 2(b), we plot SF density ρSF and total boson density ρ

for the same set of parameters showing the transition from (SF where ρSF 6= 0) to a MI

(where ρSF = 0 and ρ = 1, 2) phase. The SF to ρ = 2 MI transition is discontinuous,

whereas SF - ρ = 1 MI transition shows very weak discontinuity. To understand the

discontinuity across SF - MI(ρ=1) transition, we plot, in Fig. 3, the ground state energy

as function of SF order parameter ψ± near the SF - MI(ρ=1) transition for different

cluster sizes. Since ψ0 = 0 in the polar superfluid phase, the ground state energy E0 is a

function of ψ±. The single site mean-field theory shows two symmetric energy minima

in the energy function yielding a continuous SF to MI transition. However, we observe

a small third minimum in the cluster mean-field theory calculations with cluster sizes 2

and 4 which represent weakly first order transition.

In the Fig. 2(c), we plot singlet pair density ρSD, nematic order parameter QZZ ,

local magnetic moment identifier 〈F 2〉, and global magnetic moment identifier 〈F 2
TOT 〉.

Formation of singlets pairs commences when boson density ρ is more than one and

increases as we reach to ρ = 2 MI phase. There is precisely one singlet pair at each site

in ρ = 2 MI phase. Further increase of µ, superfluid nature of bosons suppresses singlet

pair formation initially, however, increases with density ρ. The nematic order parameter

is finite everywhere except in the ρ = 2 MI singlet phase. The global magnetic moment

is seen to be nonzero in the SF phase while it is zero in MI phases. The local magnetic

moment is zero in ρ = 2 MI phase due to singlet formation. Figure 2(d) shows the

calculated EE in SF and MI phases. This result indicates that the nematic MI has

large EE compared to all other phases. This observation can be understood as follows.

Even though bosons are localized in the MI phase, weak quantum mechanical tunneling

is possible to the nearby sites which are captured in the CMFT formalism, and due

to the antiferromagnetic interaction at a site, the cluster tends to minimize its total

magnetic moment. Because of this, each site is non-locally entangled with the nearby

sites resulting in a high EE. The calculated EE also shows discontinuity as one goes

from SF to the MI phase.
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Figure 2. Plot of (a) superfluid order parameters ψσ, their boson densities ρσ,

(b) superfluid density ρSF , boson density ρ, (c) Singlet pair density ρSD, nematic

order parameter QZZ , local magnetic moment 〈F 2〉, global magnetic moment 〈F 2
TOT 〉

identifiers, and (d) Entanglement Entropy S2 for U2 = 0.03 U0 and U0 = 21.8 with

NC = 2.

The superfluid density is plotted as a function of chemical potential µ in Fig. 4,

for cluster sizes NC = 1, 2 and 4 for U0 = 21.8, U2 = 0.03U0. With an increase in
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the cluster size, the SF density decrease. Also, there is no MI phase predicted in the

calculations when NC = 1. However, when NC = 2 and 4, the fluctuations neglected

in the calculation with NC = 1, are included and pushes the system to the MI phases.

The MI phases correspond to the range of µ values for which the superfluid density

vanishes. We analyze similar plots for different values of U0 to yield the phase diagram

plotted in Fig. 5. As the cluster size increases, the critical onsite interaction UC
0 for

the SF-MI transition decreases, which are more significant for SF-Nematic MI phase

transition compares to SF-singlet MI transition. The single site mean-field calculations

overestimate the superfluidity.

Figure 3. Ground state energies E0 against SF order parameters ψ−1 = ψ1, ψ0 = 0

near SF-ρ = 1 MI transition for (a) NC = 1, (b) NC = 2 and (c) NC = 4.

Another advantage of using CMFT is seen from Fig. 6 where we choose values of

U0 and µ in the deep ρ = 2 MI phase and plot singlet pair density ρSD, nematic order

parameter QZZ , local magnetic moment identifier 〈F 2
i 〉, and global magnetic moment

identifier 〈F 2
TOT 〉 for different U2/U0 > 0 for NC = 1, 2 and 4. Single site mean-field

theory shows complete singlet formation for all values of U2/U0, whereas CMFT results

show that for small values of interaction U2/U0 nematic phase is preferred. As U2

increases, singlet formation grows, and the nematic behavior vanishes. Similar behavior

is also seen for 〈F 2〉 and 〈F 2
TOT 〉. In single-site MFT, a site is decoupled from its

neighbors and for MI phase has all ψσ = 0, the tunneling of bosons to nearest sites is

fully cut off yielding singlet state for all U2/U0. However, in CMFT, weak tunneling of

bosons inside the cluster favors nematic order for small U2/U0. This crossover between

nematic to singlet phase in ρ = 2 MI phase is first observed in the quantum Monte-Carlo

simulations [10].
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Figure 4. SF density ρSF as a function of chemical potential µ for different values of

cluster size NC . (inset) Boson density ρ as function of chemical potential µ near unit

density.

1.4. Results:Ferromagnetic case: U2 < 0

We perform a similar calculation for the case U2 < 0. Here the superfluid phase is

ferromagnetic(FSF) and has an order parameter manifold with symmetry group SO(3).

Assuming the superfluid order parameter to be real, we get ψ1 = ψ−1 6= 0, ψ0 =
√

2ψ1 [3].

Figure 7(a) shows superfluid order parameters for U2/U0 = −0.03, U0 = 40 with

NC = 2. Here superfluidity is due to all spin components. In figure 7(b) the SF

density ρSF and the total boson density ρ are plotted for the same set of parameters.

We find the transition from the FSF to MI phase is continuous. In figure 7(c) local

magnetic moment identifier 〈F 2〉, nematic order parameter QZZ , and local magnetic

moment identifier 〈F 2
TOT 〉 are plotted. The nematic order parameter is seen to be finite

in FSF and MI phases due to its magnetic nature. The global magnetic moment and

the local magnetic moment is maximized in FSF as well as in MI phases due to on-site

ferromagnetic interactions. Figure 2(d) shows the calculated EE in FSF and MI phases.
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Figure 5. Phase diagram for U2 = 0.03 U0 obtained for different cluster size NC . As

NC increases both ρ = 1 and 2 MI lobes enlarge reducing critical UC0 .

The EE S2 is continuous but shows a discontinuity in its first derivative as one goes

from FSF to Ferro MI phase.

We plot superfluid density for different cluster sizes in Fig. 8(a) and (c). Since the

Ferro SF to MI transitions is continuous as seen from these figures, the fluctuations play

an important role near the phase boundaries. The superfluid density is reduced due to

these fluctuations and leads to observed enlargement of Mott lobes with cluster size. In

Fig. 8(b) and (d) we plot the phase diagrams for different cluster sizes.

The calculated critical value of UC
0 are given in the Table 1 for both U2 > 0 and

U2 < 0. Spin dependent on site interaction is kept |U2| = 0.03U0. The critical UC
0

decreasing with increasing NC .
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Figure 6. Plot of singlet density ρSD, nematic order parameter QZZ , local magnetic

moment 〈F 2〉, and global magnetic moment 〈F 2
TOT 〉 in ρ = 2 MI phase for varying

U2/U0 for NC = 1, 2 and 4. Single site mean-field calculations show complete singlet

formation for all U2/U0 > 0 values . However, CMFT shows nematic behaviour for

low values of U2/U0 and as the interaction strength increases Mott phase cross over to

singlet phase.

NC

UC
0 (±0.1) for U2 > 0 UC

0 (±0.1) for U2 < 0

(ρ = 1) (ρ = 2) (ρ = 1) (ρ = 2)

PSF-MI PSF-MI FSF-MI FSF-MI

1 23.4 21.9 24.2 40.9

2 21.7 21.6 23.1 39.0

4 21.1 21.0 21.8 36.7

Table 1. Critical values of U0 for different NC
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Figure 7. Plots of (a) superfluid order parameters ψσ, their boson densities ρσ
(b) superfluid density ρSF , boson density ρ (c) nematic order parameter QZZ , local

magnetic moment 〈F 2〉, global magnetic moment 〈F 2
TOT 〉, and (d) Entanglement

Entropy S2 for U2 = −0.03 U0 and U0 = 40 with NC = 2.

1.5. Conclusion

In this chapter, cluster mean-field theory is generalized for the spin-1 Bose-Hubbard

model to study various phases and phase transitions possible in the spin-1 BH model.

In this calculation, we consider cluster size up to 4 sites, and density ρ ≤ 3. Treating the

tunneling between the sites inside a cluster exactly, CMFT allows studying magnetic

phases in addition to superfluid and Mott insulator phases. For anti-ferromagnetic

interaction (U0 > 0), the superfluid phase is polar, odd density Mott insulator is nematic
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Figure 8. Plots of superfluid density ρS as function of chemical potential µ for different

values of cluster sizes NC near density (a)one and (c)two. (inset) Boson density ρ as

function of chemical potential µ. Phase diagram obtained for different cluster sizes NC
near density (b)one and (b)two.

and even density Mott insulator is nematic (for low values of interaction U2) or singlet

(for large values of interaction U2) and a continuous transition between them. Phase

transition between PSF and Nematic MI was known to be a continuous transition from

single site mean field theory, is seen to be a weakly first-order transition by using CMFT.

For ferromagnetic interaction (U2 < 0), SF and MI phases are Ferromagnetic, and the

transition between them is continuous. Critical on-site interaction UC
0 for superfluid

to Mott insulator decreases with cluster size. These calculations are numerically less

intense than Monte Carlo simulation, but the results are qualitatively same. Recently

Rényi Entanglement Entropy has been experimentally measured to characterize SF-MI

transitions in case spinless bosons[23]. Calculated Renye’s EE shows that Nematic MI

is a highly entangled quantum state compared to all other phases of this model. This

quantity can be a useful tool to characterize PSF to nematic MI transition for this model.

CMFT improves the phase diagram, but we cannot get the information of excitation
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spectra in various phases for that we use Random Phase Approximation studies given

in the following chapter.

2. Cluster Mean Field Theory applied to Spin-1 Bose Hubbard

Model:Finite temperatures

In the earlier section using CMFT, we were able to study the magnetic properties in the

SF as well as in the MI phases of Spin-1 BH model correctly. In this section, we extend

the CMFT formalism to finite temperatures. We describe the formalism below.

The cluster mean-field Hamiltonian is given by (Eq. 4)

Ĥcluster = −J
Nc∑

<k,l>,σ

(â†k,σâl,σ +H.C) +
U0

2

Nc∑
k

n̂k(n̂k − 1)

+
U2

2

Nc∑
k

(F̂ 2
k − 2n̂k)− µ

Nc∑
k

n̂k

− t
Nc∑
k,σ

′∑
l

(â†k,σψl,σ + âk,σψ
∗
l,σ − ψ∗k,σψl,σ). (7)

We construct the cluster Hamiltonian matrix in the Fock’s basis of the cluster with

an initial guess for ψk,σ. Diagonalizing the Hamiltonian matrix we get the eigenvalues

Eα and eigenvectors |α〉. The partition function is given by

Z =
∑
α

e−
Eα
T .

The occupation probabilities of each of the cluster mean-field state |α〉 at any

temperature is then equal to

Pα =
1

Z
e−

Eα
T .

The thermal averages of any operator is given by

〈Ô〉 =
∑
α

Pα〈α|Ô|α.〉.

Using these equations, we calculate new SF order parameters ψσ = 〈âσ〉 and iterate

above procedure until the order parameters are obtained self-consistently. This

procedure ensures the minimization on Free Energy F (ψ1, ψ0, ψ−1) = −T ln(Z). Using

the self-consistent eigenstates and eigen values we calculate superfluid density ρSF =∑
σ |ψσ|2, and total boson density ρ =

∑
σ ρσ where ρσ = 〈n̂σ〉. We also calculate the

Nematic order parameter Qzz = 〈F̂ 2
z,z − 1

3
F̂ 2〉, singlet density ρSD = 〈Â†SDÂSD〉 where

singlet creation operator A†SD = 1√
6
(2a†1a

†
−1 − a

†
0a
†
0), local magnetic moment 〈F 2〉, and

global magnetic moment 〈F 2
TOT 〉 to study the magnetic properties of SF and MI phases.

Compressibility κ = ∂ρ
∂µ

is calculated to study transition to NBL. The superfluid and the

MI phases undergo a transition to a normal Bose liquid phase(NBL) as temperature is

increased. This NBL is characterized by ρSF = 0 and κ 6= 0. In this study, we restrict

our self for the cluster size NC = 2 and present the results below.
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2.1. Anti-Ferromagnetic case

First, we discuss the anti-ferromagnetic case U2 > 0. The zero temperature phase

diagram for U2 = 0.03U0 has been given in Fig. 5. We choose U0 = 24 to study the

finite temperature phase diagram. For this on-site interaction U0, the model (4) has

PSF, ρ = 1 Nematic MI, and ρ = 2 singlet MI phases. Figure 9 shows the evolution

of the SF order parameters and the boson densities as a function of temperature in

the Polar SF phase at fixed density ρ = 1.5. At T = 0, we have ψ1 = ψ−1 6= 0 and

ψ0 = 0 depicting the polar nature of the SF phase. The existence of small but non-zero

ρ0 in the polar superfluid implies that bosons with spin component σ = 0 are in the

NBL state. With the increase in temperature, ψ±1 decreases, and vanishes at the SF to

NBL transition. The ψ0 however, remain zero. Thus, the polar nature of the SF phase

persists even at finite temperatures. It is interesting to note that ρ0 increases on the

expense of decrease in ρ±1 with increase in the temperature and ρ1 = ρ0 = ρ−1 in the

NBL phase. The compressibility κ shows a maximum at the SF-NBL transition and

has no discontinuity seen in the spinless case. Figure 10 shows the comparison of ρSF
calculated from the single site (NC = 1) and two sites cluster (NC = 2) cluster mean-

field keeping fixed density ρ = 1.5 for various temperature. For all temperatures, we find

ρSF from NC = 2 cluster is lower than single site result. This behavior is expected since

CMFT includes some of the quantum fluctuations neglected in the single site mean field

calculations. As T increases, the SF density decreases and vanishes in the NBL phase.

The critical temperature for SF-NBL transition is lower in the CMFT (TCNC=2) than the

single site mean-field theory (TCNC=1). This result implies that CMFT has incorporated

quantum as well as thermal fluctuations better than the single site mean field theory.

Figure 9. Variation of SF order parameters (ψ1, ψ0, ψ−1), boson densities ρ1, ρ−1

and ρ0, and compressibility κ with temperature T for NC = 2 and ρ = 1.5. The

compressibility κ plot has its scale in the right-side axis.
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Figure 10. Superfluid density ρSF calculated from the single site (NC = 1) and

cluster of NC = 2 sites mean-field theory for different T . CMFT predicts lower critical

temperature(TCNC=2) for the SF-NBL transition.

We plot, in Figs. 11(a) and (b) respectively for densities ρ = 1 and ρ = 2, the

compressibility κ calculated using NC = 1 and NC = 2 mean-field theories for different

temperatures to study the transition from MI to NBL. In either case, starting from the

MI phases at zero temperature, the compressibility increases with temperature, and the

MI phase makes a cross over to NBL. The cluster size is seen to have no prominent effect

on this crossover. It is interesting to notice that Nematic (ρ = 1) and singlet (ρ = 2)

MI phase melt to NBL phase at the same rates.

Figure 12 shows the total magnetization of cluster 〈F 2
TOT 〉 as a function of T in

the ρ = 1 MI phase for different ratio of U2/U0. At zero temperature cluster lowers

its energy by minimizing the global magnetization, and this state is predicted to be

maximally entangled via quantum fluctuations (Fig. 2). For a small ratio of U2/U0,

small thermal fluctuations are sufficient to break this anti-ferromagnetic arrangement

and 〈F 2
TOT 〉 increases abruptly. For higher U2/U0 values; however, the antiferromagnetic

coupling is stronger and higher values of temperature are needed to maximize 〈F 2
TOT 〉.

Other parameters like the magnetic moment of site〈F 2〉 and Nematic order parameter

QZZ do not change significantly inside the ρ = 1 Mott insulator.

In the Figs 13(a)-(d) 〈F 2〉, ρSD, 〈F 2
TOT 〉 and QZZ are plotted as a function of

temperatures for different U2/U0 ratios in the ρ = 2 MI phase. With the increase in

thermal fluctuations, the singlet pairs start breaking and ρSD decreases. This behavior

leads to an increase in Nematic order parameter, local and global magnetization.

We now obtain the finite temperature phase diagram of spin-1 Bose Hubbard model.

For this purpose we keep U0 = 24 and U2 = 0.03U0. The superfluid density ρSF ,

boson density ρ and compressibility κ are plotted in Figs. 14(a-d) for temperatures
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Figure 11. Compressibility κ is plotted against T starting from (a) ρ = 1 MI Nematic

phase and (b) ρ = 2 singlet phase for cluster sizes NC = 1 and NC = 2. The

compressibility calculations are done by keeping densities fixed, i.e ρ = 1 and ρ = 2 in

(a) and (b) respectively.

Figure 12. Global magnetization of cluster 〈F 2
TOT 〉 plotted against T in the ρ = 1

MI phase for different U2/U0 ratios.
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Figure 13. Magnetic moment of a site, singlet density, magnetization of cluster and

Nematic order as a function of T for different U2/U0 ratios in ρ = 2 MI phase.

T = 0, 0.2, 0.8, and 1.5 respectively. For the same parameters, singlet density ρSD,

Nematic orderQZZ , local magnetic moment identifier 〈F 2〉, and global magnetic moment

identifier 〈F 2
TOT 〉 are plotted in Figs. 15(a-d). We observe the following. At T = 0, the

compressibility κ is non-zero in polar SF phase but zero in MI phases. It has a jump

at the SF-MI phase transition. For small temperatures, for example, T = 0.2, κ is very

small in the MI phases compared to that in polar SF phase. However, the Mott region

with a density of ρ = 1 is enlarged. The thermal fluctuations break the highly entangled

Anti-Ferro magnetic arrangement of the spins in the cluster in the ρ = 1 MI, whereas no

such changes are seen in the SF and ρ = 2 singlet MI phases at this temperature. Also,

κ shows a notable jump at polar SF to ρ = 1 MI transition. For higher temperatures,

say T = 0.5 the SF density in polar SF phase is reduced, and an NBL phase is seen to

emerge between the polar SF and ρ = 1 MI phases. The thermal fluctuations present

here reduces the singlet density slightly in the ρ = 2 MI and increases the local and

magnetic moment. With further increase in temperature to T = 1.5, SF density is

seen to reduce further, and the NBL phase emerges at the boundaries of polar SF and

MI transition. The singlet pairing in ρ = 2 MI is greatly reduced due to the thermal

fluctuations.

We plot the phase diagram in the µ-T plane for U0 = 24 and U2 = 0.03 U0 in Fig. 16.

The MI to NBL transition is a crossover and to mark the MI phase, we have considered

two cases: (i) the points where ρSF = 0 and κ < 0.0001 and (ii) the points where
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Figure 14. The superfluid density ρSF , boson density ρ, and compressibility κ

plotted against chemical potential µ for cluster size NC = 2 at temperatures (a) T = 0,

(b) T = 0.2, (c) T = 0.8, and (d) T = 1.5. We keep U0 = 24 and U2/U0 = 0.03.

Direction of arrows indicate scale to follow.

ρSF = 0 and κ < 0.03. We observe that ρ = 1 Mott phase enlarges with temperature

due to the breaking of the antiferromagnetic alignment of the spins in the cluster. No

such effect is seen in the ρ = 2 MI phase because of the singlet formation. There is a

transition from PSF-MI-NBL with temperature when the density is close to unity. It is

interesting to notice that even though small thermal fluctuations are sufficient to break

the ground state of highly entangled ρ = 1 Nematic MI compared to thermally robust

ρ = 2 singlet MI, both Mott phases melt to NBL phase at the same temperature.

2.2. Ferromagnetic case

We now move to the ferromagnetic case. The zero temperature phase diagrams

(Figs. 8(b) and (d)) show SF, and MI phases are ferromagnetic, and the transition

between them is always continuous. The finite temperature results from CMFT with

NC = 2 are given below, for a typical U0 = 42 and U2/U0 = −0.03.

The plot transition from the SF to NBL phase in Fig. 17(a). As the temperature

increases, ψ1 = ψ−1 and ψ0 starts decreasing and vanishes in the NBL phase. The

ferromagnetic nature of the SF, ψ1 = ψ−1 and ψ0 =
√

2ψ1, is satisfied for all

temperatures. ρ1 = ρ−1 increases at the expense of a decrease in ρ0 until all three

densities become equal in the NBL phase. Compressibility κ shows a maximum at the
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Figure 15. The singlet pair density ρSD, Nematic order parameter QZZ , local

magnetic moment identifier 〈F 2〉, and 〈F 2
TOT 〉 plotted against chemical potential µ

for cluster size NC = 2 at temperatures (a) T = 0, (b) T = 0.2, (c) T = 0.8, and (d)

T = 1.5 keeping U0 = 24 and U2/U0 = 0.03.

Ferro SF to NBL phase transition. Further, in the Fig. 17(b) we compare the SF-

NBL transition with cluster sizes NC = 1 and NC = 2 keeping density fixed. We find

ρSF obtained from CMFT is smaller than that from the single site MFT. We expect

this behavior since CMFT includes quantum fluctuations neglected by the single site

MFT. The CMFT predicts lower TC (critical temperature for the SF-NBL transition)

compared to the single site mean field theory.

Figure. 18 shows comparison of compressibility κ starting from zero temperature

ρ = 1 and ρ = 2 MI lobes for various temperatures. Increase in κ with temperature

signifies melting of the MI phase to the NBL phase. We find the MI-NBL transition

temperature is independent of the density of the Mott lobe.

The finite temperature effect on the magnetic properties inside ρ = 1 MI phase is

studied in Fig. 19. The local magnetic moment 〈F 2〉 does not change much with the

increase in temperature whereas the global magnetization 〈F 2
TOT 〉 is seen to reduce and

saturate at high temperatures for all values of U2/U0.

In Fig. 20 we plot the superfluid density ρSF , the boson density ρ, and the

compressibility κ for different chemical potentials µ for temperatures T = 0, 0.2, 1 and

1.5. We also plot, for the same parameters, the local magnetic moment and global

magnetic moment in Fig. 21. The κ = 0 with ρSF = 0 represents ρ = 1, 2 MI
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Figure 16. µ− T phase diagram for U0 = 24 and U2/U0 = 0.03

Figure 17. (a) Variation of SF order parameters (ψ1, ψ0, ψ−1) and boson densities

(ρ1, ρ−1, ρ0) with temperature T for ρ = 1.5. Compressibility κ is also plotted with its

scale given in the right-side axis. (b) The SF density ρSF calculated from single site

(NC = 1) and cluster of NC = 2 sites MFT against T .
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Figure 18. Compressibility κ is plotted against T for ρ = 1 and ρ = 2 Ferro MI

phases.

Figure 19. Global magnetization of the cluster 〈F 2
TOT 〉 plotted against T for ρ = 1

MI phase for different U2/U0 ratios. (inset) Local magnetic moment identifier 〈F 2〉
against T in ρ = 1 MI phase.
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phases. The SF-MI transition is continuous in the zero temperature. As we increase the

temperature, say T = 0.2, Fig. 20(b) shows that SF-MI transition becomes discontinues.

The local magnetic moment remains maximized in MI phases, but we find a reduction

in the global magnetic moment. Also, MI phases have enlarged. When the temperature

is increased further to T = 1 and T = 1.5, SF density reduces, and an envelope of NBL

phase form around the MI phases. Also, the global magnetization reduces with increase

in temperature.

Figure 20. Plots of the superfluid densityρSF , boson density ρ and the

compressibility κ versus chemical potential µ at temperatures (a) T = 0, (b) T = 0.2,

(c) T = 1 and (d) T = 1.5. U0 = 42 and U2/U0 = −0.03. Direction of arrows indicate

scale to follow.

We plot the phase diagram in µ−T plane in Fig. 22. Phase boundary for MI-NBL

transition is selected for κ ≤ 0.0001 and κ < 0.005 to mark the MI-NBL crossover. We

also observe ρ = 1 and ρ = 2 MI phases melt to NBL phase at the same rate.

2.3. Conclusion

The finite temperature RPA and Cluster Mean Field formalism are developed here.

Using these methods finite temperature properties of soft-core and spin-1 Bose Hubbard

model are studied in detail. Using RPA equations the speed of sound and the momentum

distribution are calculated for SC-BH modeland it shows interesting results. The sound

velocity is seen to decrease smoothly as with increase in thermal fluctuations and

becomes zero in NBL phase. Also the peak in momentum distribution in SF phase

is seen to diminish as one goes into NBL phase by increasing the temperature. This

gives the experimental signature of SF o NBL transition.

For Spin-1 BHM at nonzero temperatures, Polar or Ferro nature of SF persists

and PSF-Nematic MI transition becomes strongly first order. Even though very low
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Figure 21. Plots of local magnetic moment identifier 〈F 2〉 and 〈F 2
TOT 〉 versus the

chemical potential µ at temperatures (a) T = 0, (b) T = 0.2, (c) T = 1 and (d)

T = 1.5. U0 = 42 and U2/U0 = −0.03. Direction of arrows indicate scale to follow.

thermal fluctuations are sufficient to destroy the density one Nematic phase compared

to the robust singlet MI, both MI phases melt to NBL phase at same rates. The MI-

NBL transition is like a crossover and the transition temperature cannot be identified.

Altogether, the MI to NBL transition do not prominently depend on the density or its

magnetic structure. The major affect of the magnetic interactions are reflected while

studying SF to MI transitions at zero and finite temperatures.

3. Phase Transitions of Spin-1 Bosons in an Optical Superlattice

3.1. Introduction

Ultracold atoms in optical lattices and superlattices provide us with the realization

of engineered quantum many-body lattice models [24, 25, 26]. One remarkable

development in this context is the realization of Bose gases in the optical lattices.

Superfluid (SF) to Mott Insulator (MI) quantum phase transition in cold bosonic atoms

has received great scientific attention since its theoretical prediction in the context of

Bose Hubbard model (BHM) and followed by its experimental realization [27]. When

traps are purely optical, Alkali atoms like 87Rb, 23Na and 30K, with hyperfine spin

F=1, have spin degrees of freedom, and thus, the interaction between bosons is spin-

dependent [1, 2]. The interaction is ferromagnetic (e.g. 87Rb) or anti-ferromagnetic (e.g.
23Na), depending upon scattering lengths of singlet and quintuplet channels [1]. The

spin-dependent interaction in spinor gases exhibits richer quantum effects than their

single-component counterparts, and it not only modifies the nature of phase diagrams

but also allows the study of superfluidity and magnetism.
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Figure 22. µ− T phase diagram for U0 = 42 and U2/U0 = −0.03

The optical superlattices are obtained by the superimposition of two monochromatic

lattices with slightly different wavelengths [28]. When the relative phase between the

two standing waves and their respective depths vary independently, a periodic pattern of

potential wells with two different depths at two adjacent sites is obtained. This difference

in the depth of two nearby sites is the measure of superlattice potential. In this report,

we investigate spin-1 ultracold bosons loaded into 2-dimensional bi-chromatic optical

superlattices.
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3.2. Methodology

The spin-1 BoseHubbard model, which describes spin full bosons in an optical

superlattice, is given by;

H = − t
∑

<i,j>,σ

(a†i,σaj,σ + a†j,σai,σ) +
U0

2

∑
i

n̂i(n̂i − 1) +
U2

2

∑
i

(
−→
F 2
i − 2n̂i)

−
∑
i

µin̂i (8)

where first term represents hopping of bosons between nearest neighbour sites

< i, j > with an amplitude t. Here ai,σ(a†i,σ) represents annihilation (creation) operator

at site i with spin projection σ = {−1, 0, 1}, number operator n̂i,σ = a†i,σai,σ and

n̂i =
∑
σ

n̂i,σ. Spin operator
−→
F i = (F x

i , F
y
i , F

z
i ) where Fα

i =
∑
σ,σ′

a†i,σS
α
σ,σ′ai,σ′ with

α = x, y, z and Sασ,σ′ are standard spin-1 matrices. Spin independent (dependent)

interaction U0(U2) arises due to the difference in the scattering length a0 and a2 in

the spin S=0 and S=2 channels respectively. The spin dependent interaction U2 can

be positive (anti-ferromagnetic) or negative (ferromagnetic) depending on the values of

a0 and a2[1]. The site dependent chemical potential µi = µ + (−1)iδ where µ controls

the bosons density and δ is the shift in energy due to superlattice potential. Here, we

consider a bi-chromatic superlattice and thus, the whole lattice is bipartite into A and

B sub-lattices with µA = µ+ δ and µB = µ− δ.
In the cluster mean-field theory [21, 29], the entire lattice is divided into clusters

with NC number of sites. In this calculation, we take NC = 2 and thus, each cluster

consists of one site each from A and B sub-lattices. We first decouple each cluster from

its nearest neighbor clusters using standard mean-field procedure [?]. The resultant the

model 9 is given by

H =
∑

clusters

HC (9)

HC = − t
∑
σ

(a†A,σaB,σ + a†B,σaA,σ)

− 3t
∑
σ

[(aA,σ + aA,σ)ψB,σ + (aB,σ + aB,σ)ψA,σ − 2ψA,σψB,σ]

+
U0

2

∑
i=A,B

n̂i(n̂i − 1) +
U2

2

∑
i=A,B

(
−→
F 2
i − 2n̂i)

−
∑
σ

(µAn̂A,σ + µBn̂B,σ) (10)

Here ψA,σ = 〈aA,σ〉(ψB,σ = 〈aB,σ〉) is the A(B) sub-lattice superfluid order

parameter with spin component σ. We determine ψA,σ and ψB,σ self-consistently

using the method described in Ref. [29]. Sub-lattice superfluid densities ρSA(B) =



26∑
σ

∣∣ψA(B),σ

∣∣2 and densities of bosons ρA(B) = 〈n̂A(B)〉 are calculated from this self-

consistently determined ground state. We also calculate the average density of bosons

% = 1
2
(ρA + ρB) and the density wave order parameter ODW = |ρA − ρB| . We can

characterize the ground state of model 9 from these quantities. The ground state is a

superfluid (Mott insulator) if ρSA(B) is non-zero (zero). The magnetic properties of the

superfluid and Mott insulator phases are determined from Nematic order parameter

Qα,α
A(B) =

〈
Fα
A(B)F

α
A(B) −

1
3
〈F 2

A(B)〉
〉

and singlet pair density ρSDA(B) = 〈Â†A(B)ÂA(B)〉,

where the singlet creation operator Â†A(B) =
(

2a†A(B),1a
†
A(B),−1 − a

†
A(B),0a

†
A(B),0

)
. In

addition to these quantities, we also investigate entanglement properties [11] of different

ground states by calculating Rényi entanglement entropy (EE) given by S2[A(B)] =

−log[Tr(ρ2A(B))] where ρA(B) is the reduced density matrix for sub-lattice A (B)[12].

3.3. Results: Antiferromagnetic Case

We now present the results of the Cluster Mean Field Theory applied to 2-dimensional

spin-1 Bose Hubbard model in bi-chromatic superlattice, with cluster size NC = 2.

Here we restrict ourselves to the anti-ferromagnetic case U2 > 0. We set our energy

scale by choosing t = 1 and thus all parameters are dimensionless. It is known from

the earlier studies that, for the anti-ferromagnetic case ( U2 > 0), the symmetry the

superfluid phase is polar (PSF) and in the mean-field level symmetry restricts values of

the superfluid order parameters such that either ψA(B),1 = ψA(B),−1 6= 0, ψA(B),0 = 0

or ψA(B),1 = ψA(B),−1 = 0 and ψA(B),0 6= 0[29]. Superfluid order parameters are

plotted in the 23(a) for U0 = 30, U2 = 0.03U0 and superlattice potential δ = 6. It

is evident from the 23(a) that the superfluid phases have polar symmetry: we find

ψA(B),1 = ψA(B),−1 6= 0 and ψA(B),0 = 0 and thus, superlattice potential do not change

this symmetry. There are four regions in the chemical potentials where ψA(B),σ = 0

thus, correspond to four insulator phases. The sublattice bosons densities ρA and ρB,

the average boson density % = 1
2

(ρA + ρB) and the density wave order parameter ODW

are plotted in the 23(b).

The four insulator regions have average densities ρ = 1
2
, 1, 3

2
and 2 with sublattice

densities (ρA, ρB) = (1, 0), (1, 1), (2, 1) and (2, 2) respectively. Insulators with the

density ρ = 1 and 2 are the normal Mott insulators where the density is uniform across

whole lattice and ODW = 0. However, insulators with ρ = 1
2

and 3
2

have finite ODW

and are called density wave insulators. Thus, the superlattice potential introduces

additional insulator phases with half-integer bosons densities. The sublattice bosons

densities with different spin component ρA(B),σ are plotted in the 23(c). In general, we

find ρA(B),±1 > ρA(B),0 except in the Mott insulator region, i.e., for ρ = 1 and 2, we

find ρA,±1 = ρA,0 = ρB,±1 = ρB,0. It should be noted here that the symmetry of the

polar superfluid phase is such that ψA(B),1 = ψA(B),−1 6= 0, ψA(B),0 = 0. This imply

that the bosons with spin component σ = 0, though present in the system are not in

the superfluid phase. Only bosons with spin component σ = ±1 form superfluid. This
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leads to a situation where we have a two-fluid model with bosons with σ = ±1 are

in superfluid phase while bosons with σ = 0 are in the normal fluid phase. Magnetic

properties of the superfluid and the insulating phases are given in the 23(d) where we

plot Nematic order parameter Qz,z
A(B) and singlet pair density ρSDA(B). We find that density

ρ = 2 Mott insulator phase is a singlet phase with ρSDA = ρSDB = 1 and Qz,z
A = Qz,z

B = 0.

The density ρ = 1 Mott insulator phase, however, is nematic Qz,z
A = Qz,z

B > 0 and

ρSDA = ρSDB = 0. In ρ = 1
2

density wave insulator, the sublattice boson densities are

(ρA, ρB) = (1, 0). In this phase we find Qz,z
A > 0, Qz,z

B = 0 and ρSDA = ρSDB = 0 . In the

ρ = 3
2

density wave insulator, however, Qz,z
B > 0, Qz,z

A = 0 and ρSDA = 1, ρSDB = 0. So, in

the ρ = 3
2

density wave insulator, A-sublattice is in the singlet phase and B-sublattice

is in the nematic phase, whereas in theρ = 1
2

density wave insulator, A-sublattice is in

the nematic phase. We present the results for Rényi EE in 24. In general, we find

S2[A] = S2[B] and are very small except in the ρ = 1 Mott insulator where S2 is two

orders of magnitude larger. S2 is constant in insulating phases and vary with chemical

potential in polar superfluid phases.

We plot the phase diagram of model 10 for δ= 6 and 10 in 25(a) and (b) respectively.

There are four insulating phases represented by lobes. The dotted lines represent phase

diagram for δ= 0 where there are only two lobes correspond to ρ =1 and 2 Mott insulator

phases. As we introduce the superlattice potential, these two Mott phases shrink and

two additional density wave insulating phases form with average density ρ = 1
2

and
3
2
. We also observed that these density wave insulator lobes enlarge with superlattice

potential.

3.4. Conclusion

In our present work, we use the cluster mean field theory to study the behavior of spin-

1 bosons in the optical superlattices. Since intra-site fluctuations are treated exactly

in CMFT, it permits us to study the magnetic and the superfluid properties of the

system simultaneously. Our investigation primarily focused on the anti ferromagnetic

case (U2 > 0). We conclude that, in bi-chromatic superlattices, the introduction of

superlattice potential favours the localisation of the bosons and this leads to density wave

Mott insulators. When δ=0, we have uniform superfluid and Mott insulator phases. As

δ increases, the uniform Mott insulator lobes shrink while the half integer density wave

insulator lobes enlarge. The symmetry of the superfluid phase remains unaffected by

the superlattice potential. We have also studied the magnetic properties of insulating

phases as well as calculated Rényi EE. We found that the ρ ==1 Mott lobe is nematic,

and ρ ==2 lobe a singlet. The magnetic property of the density wave insulator, however,

depends on the sub-lattice density. Rényi EE remains mostly small except at density

ρ ==1 Mott insulator and could be used as a marker of the transition.
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Figure 23. (Colour online) (a) Superfluid order parameters, (b) densities and density

wave order parameters, (c) densities with spin component σ and (d) nematic order and

singlet pair density are plotted as a function of chemical potential µ for U0 = 39, U2

= 0.03U0 and δ = 6.

3.5. Results: Ferromagnetic Case

We now present the results of the Cluster Mean Field Theory applied to 2-dimensional

spin-1 Bose Hubbard model in bi-chromatic superlattice, with cluster size NC = 2.

Here we restrict ourselves to the ferromagnetic case U2 < 0. We set our energy scale by

choosing t = 1 and thus all parameters are dimensionless. It is known from the earlier

studies that, for the anti-ferromagnetic case ( U2 > 0), the symmetry the superfluid

phase is polar (PSF) and for ferromagnetic case (U2 < 0) it is a ferromagnetic superfluid

phase (FSF)[29]. In the mean-field level, A ferromagnetic superfluid is characterized by

ψA(B),1 = ψA(B),−1 6= ψA(B),0 and a relation between superfluid order parameters is such

that ψA(B),0 =
√

2ψA(B),±1. Superfluid order parameters are plotted in the 26(a) for

U0 = 39, U2 = −0.03U0 and superlattice potential δ = 6. It is evident from the 26(a)
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Figure 24. (Colour online) RényiEE S2 and superfluid density ρS are plotted as a

function of chemical potential µ for U0 = 30, U2 = 0.03U0 and δ = 6.

that the superfluid phases have ferromagnetic symmetry: we find ψA(B),0 =
√

2ψA(B),±1

and thus, superlattice potential do not change this symmetry. There are two regions

in the chemical potentials where ψA(B),σ = 0 thus, correspond to two insulator phases.

Since we are looking at a ferromagnetic system, Mott insulator phase with density ρ=

2 appears at higher interaction potential as can be seen from 28(a). The sublattice

bosons densities ρA and ρB, the average boson density % = 1
2

(ρA + ρB) and the density

wave order parameter ODW are plotted in the 26(b).

The insulator regions have average densities ρ = 1
2
, 1, 3

2
&2 with sublattice densities

(ρA, ρB) = (1, 0), (1, 1), (2, 1)&(2, 2) respectively. Insulators with the density ρ = 1

is the normal Mott insulators where the density is uniform across whole lattice and

ODW = 0. However, insulators with ρ = 1
2

and 3
2

have finite ODW and are called density

wave insulators. Thus, the superlattice potential introduces additional insulator phases
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Figure 25. (Colour online) Phase diagram of model (1) for (a)δ = 6 and (b) δ = 10.

The coloured lobes are insulating phases and rest of the region is polar superfluid. The

dashed line represent the phase diagram for δ = 0.

with half-integer bosons densities. The sublattice bosons densities with different spin

component ρA(B),σ are plotted in the 26(c). In general, we find ρA(B),0 > ρA(B),±1

and follows the relation,ρA,0 = 2ρA,±1. Magnetic properties of the superfluid and

the insulating phases are given in the 26(d) where we plot Nematic order parameter

Qz,z
A(B) and singlet pair density ρSDA(B). We find that there is no singlet formation since

ρSDA = ρSDB = 0 due to non-formation of spin pairs in ferromagnetic systems. In theρ = 1
2

density wave insulator, A-sublattice is in the nematic phase. In ρ = 1
2

density wave

insulator, the sublattice boson densities are (ρA, ρB) = (1, 0). In this phase we find

Qz,z
A > 0, Qz,z

B = 0. The behaviour of nematic order parameter is directly dependent

on the density at the respective site. We present the results for Rényi EE in 27.

In general, we find S2[A] = S2[B] and are very small implying the system not being

highly entangled. S2 is constant in insulating phases and vary with chemical potential
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in superfluid phases.

We plot the phase diagram of model 10 for δ= 6 and 10 in 28(a) and (b) respectively.

There are four insulating phases represented by lobes. The dotted lines represent phase

diagram for δ= 0 where there are only two lobes correspond to ρ =1 and 2 Mott insulator

phases. As we introduce the superlattice potential, these two Mott phases shrink and

two additional density wave insulating phases form with average density ρ = 1
2

and
3
2
. We also observed that these density wave insulator lobes enlarge with superlattice

potential.

Figure 26. (Colour online) (a) Superfluid order parameters, (b) densities and density

wave order parameters, (c) densities with spin component σ and (d) nematic order and

singlet pair density are plotted as a function of chemical potential µ for U0 = 39, U2

= -0.03U0 and δ = 6.

3.6. Conclusion

In our present work, we use the cluster mean field theory to study the behavior of

spin-1 bosons in the optical superlattices. Since intra-site fluctuations are treated

exactly in CMFT, it permits us to study the magnetic and the superfluid properties

of the system simultaneously. Our investigation primarily focused on the ferromagnetic

case (U2 < 0). We conclude that, in bi-chromatic superlattices, the introduction of

superlattice potential favours the localisation of the bosons and this leads to density wave

Mott insulators. When δ=0, we have uniform superfluid and Mott insulator phases. As
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Figure 27. (Colour online) RényiEE S2 and superfluid density ρS are plotted as a

function of chemical potential µ for U0 = 39, U2 = -0.03U0 and δ = 6.

δ increases, the uniform Mott insulator lobes shrink while the half integer density wave

insulator lobes enlarge. The symmetry of the superfluid phase remains unaffected by

the superlattice potential. We have also studied the magnetic properties of insulating

phases as well as calculated Rényi EE. We notice the absence of singlet phases. The

magnetic property of the density wave insulator, however, depends on the sub-lattice

density. Rényi EE remains mostly small.
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Abstract. We obtain excitation spectra in the superfluid and the Mott Insulator phases of Bose Hubbard model near unit 
filling within Random Phase Approximation (RPA) and calculate its spectral weight. This gives a transparent description 
of contribution of each excitation towards the total Density of States (DOS) which we calculate from these spectral 
weights.  

Keywords: Bose Hubbard Model, Phase transitions, Excitations.
PACS:  67.85.De, 03.75.Kk, 05.30.Jp

INTRODUCTION

Great control and flexibility over ultracold gases 
loaded in optical lattice has led itself as a important 
tool to study quantum phase transitions in precise way 
[1]. Bosonic gases in such lattice are described by 
Bose-Hubbard Models, which predicts many novel 
phases including much studied superfluid (SF) and 
Mott-insulating (MI) phases. These models have 
received great interest ever since proposal and 
experimental realization of Bose Hubbard model [2,3]. 
Varity of theoretical techniques like Quantum Monte 
Carlo, DMRG, mean field theory have been employed 
to study its phase diagram and excitations. These are in 
good agreement with each other.

Although great amount of work has been done on 
calculating excitations and density of states (DOS) of 
these excitations for this model, a proper description of 
spectral weight of each excitation and its contribution 
towards DOS is lacking. In this letter we obtain 
excitations within Random Phase Approximation 
(RPA) within mean felid theory of Bose Hubbard 
Model and calculate the spectral weight for each of 
them. Further we calculate Density of States 
corresponding to each of these excitations. In next 
section we give model and method of calculation. In 
final section we present the results obtained.

MODEL AND METHOD

Model describing bosons in optical lattice is given 
by 

(1)ˆ)1ˆ(ˆ
2

).(
, i

i
i

ii
ji

ji nnnUchaatH

where t is the hopping amplitude and summation 
<i,j> runs over all the nearest neighboring sites.
a+

i(ai) and ni are, respectively, the boson creation 
(annihilation) and number operators at site i. U is the 
onsite repulsion strength and is chemical potential.

Mean Field Theory 

Hamiltonian (1) can be solved by using mean field 
approximation which reduces the full Hamiltonian into 
summation over single site Hamiltonian [4]. This is 
done by writing creation (annihilation) operators as a 
average value and fluctuations, i.e. ai=<ai> i
(a+

i=<a+
i

+
i). Introducing superfluid order 

parameter =<ai>, Hamiltonian (1) can be re-written 
as ).(

i ij
ji

MF
i CHaatHH where

2)1(
2

)( ztnnnUaaztH iiiii
MF
i

and z is the coordination number of the lattice. We 
scale all parameters by setting zt=1. Mean field 
Hamiltonian is solved by operating it on number basis 
|0>,|1>...|nmax> and calculating self-consistently. 
Here nmax is maximum number of bosons allowed per 
site to truncate the single site Hilbert space and it 
depends on onsite interaction U and . This gives us 
eigen energies E and eigen states of the single 
site Hamiltonian. The boson density i> is 
calculated from the ground state. Non-zero order 
parameter shows a superfluid phase whereas 

cts Mott 
insulating phase. Phase diagram is plotted in Figure (1) 
where we focused near density .
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Excitations within Random Phase 
Approximations 

The excitations are obtained from the single 
particle Green's Function defined by

)0(),()()(, jiji atatitg where is 

Heaviside step function. We construct standard basis 
operator [5] using the mean field states; we define 
Li =|i i . The single particle Green's function 
can be written as ),()( ''

''
'', tGTtg ijij

ji
where 

Tij +
i j and

)0(),()()( ''''
jiij LtLtitG . We solve equation 

of motion for Gij within Random Phase 
Approximation and Fourier transforming it into 
momentum and energy space, we get

),(
2
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k

where P =< L >-< L = T + T
and   

Solving the equation of motion for the Green 
function and writing it in the form

                                                                              (2) 
                                                
we get excitation spectra i(k) and its spectral 

weights A'i(k). Summation i runs for all excitations. 
Density of states for each excitation i(k) is calculated 

by
k

ii kg(N ),(Im1)  

where += ; we have added small complex part 
to Results of these calculations have been shown in
the next section. 

RESULTS

The phase diagram of model (1) near unit density is 
shown in Figure (1). We choose few characteristic 
points shown in the figure by red dots to obtain the 
excitations. For example excitations at point (a) 

ure (1) are plotted in the Figure 
(2). Here we choose ky=kz=0 and plot excitations as 
function of kx. First particle (green line) and hole (blue 
line) excitations are gapless consistent with the SF 
nature of the phase. The first gapped particle (red line) 
excitation has finite weight, however first gapped hole 
(orange line) excitation has almost zero weight. This is 
because for 
than hole excitation. In all cases we see that spectral 

weights for excitations near to kx=0 are dominant and 
it reduces as we increase kx. We have not shown 
particle and hole excitations which have zero spectral 
weights.

FIGURE 1. Mean field phase diagram of model 
(1) near unit density. Red dots are the points where 
excitations are calculated and presented below.

FIGURE 2. (i) Excitation spectra for point (a) in 
figure (1). (ii) represents corresponding spectral 
weights. Excitation and corresponding spectral weight 
are represented by same coloured line. (inset) Weight 
for lowest hole excitation. 

Density of States (DOS) for each of these 
excitations, using the same colour coding, is plotted in 
figure (3). 

FIGURE 3. DOS of excitations of figure (2).  

density, but continue to be in the SF phase, several 
higher excitations contributes to the DOS since the 
spectral weight of these excitations are finite.  Both 
particle and hole excitations contributes significantly. 
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FIGURE 4. Excitations (i) and (iv), their spectral weights (ii) and (v)  and DOS (iii) and (vi), respectively,  for 

For Mott insulator, near the lower edge of lobe 
(point (d)), the excitations and their weights are given 
in figure (5). Both particle and hole excitations have
finite gap. Hole excitation has smaller gap compare to 
particle excitation. Since the point we choose is closer 
to the lower edge of the lobe, the hole excitation has 
higher spectral weight. The corresponding density of 
state is given in figure (6).

FIGURE 5. Excitations (i) and weights (ii) for 
point (d) in figure (1). Only excitations which have 
finite spectral weight have shown here.

FIGURE 6. DOS of excitations of figure (5) in 
MI phase.  
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Abstract. In this paper, we analyze superfluid, insulator and various magnetic phases of ultracold spin-1 bosonic atoms in 
two-dimensional optical superlattices. Our studies have been performed using Cluster Mean Field Theory. Calculations 
have been carried out for a wide range of densities and the energy shifts due to the superlattice potential. We find 
superlattice potential do not change the symmetry of the polar superfluid phases. Superlattice potentials induce Mott 
insulator phases with half-integer densities. The phase diagram is obtained using superfluid density, nematic order and 
singlet density. Second order Rényi entanglement entropy is also calculated in different phases. The results show that 
Rényi entanglement entropy is large in the nematic Mott insulator phase. 

INTRODUCTION 

Ultracold atoms in optical lattices and superlattices provide us with the realization of engineered quantum 
many-body lattice models [1]. One remarkable development in this context is the realization of Bose gases in 
the optical lattices. Superfluid (SF) to Mott Insulator (MI) quantum phase transition in cold bosonic atoms has 
received great scientific attention since its theoretical prediction in the context of Bose Hubbard model 
(BHM), and followed by its experimental realization [2-4]. When traps are purely optical, Alkali atoms like 
87Rb, 23Na and 30K, with hyperfine spin F=1, have spin degrees of freedom and thus, the interaction between 
bosons is spin-dependent [5]. The interaction is ferromagnetic (e.g. 87Rb) or anti-ferromagnetic (e.g. 23Na), 
depending upon scattering lengths of singlet and quintuplet channels [6]. The spin-dependent interaction in 
spinor gases exhibits richer quantum effects than their single-component counterparts and it not only modifies 
the nature of phase diagrams but also allows the study of superfluidity and magnetism. 
 
The optical superlattices are obtained by super-imposition of two monochromatic lattices with slightly 
different wavelengths [7]. Manipulating the relative phase between the two standing waves and their respective 
depths independently, a periodic pattern of potential wells with two different depths at two adjacent sites is 
obtained. This difference in the depth of two adjacent sites is the measure of superlattice potential. In this 
report, we investigate spin-1 ultracold bosons loaded into 2-dimensional bi-chromatic optical superlattices.  

MODEL AND METHOD 

The spin-1 Bose–Hubbard model, which describes spin full bosons in an optical superlattice, is given by 

                 ࣢ ൌ	െݐ	 ∑ ൫ܽ௜,ఙ
ற

௝ܽ,ఙ ൅ ௝ܽ,ఙ
ற ܽ௜,ఙ൯ ൅〈௜,௝〉,ఙ

௎బ
ଶ
∑ ො݊௜ሺ ො݊௜ െ 1ሻ௜ ൅	௎మ

ଶ
∑ ሺܨԦ௜

ଶ െ 2 ො݊௜ሻ௜ െ	∑ ௜ߤ ො݊௜௜ ,                (1) 

where first term represents hopping of bosons between nearest neighbour sites 〈݅, ݆〉 with an amplitude t. Here 
ܽ௜,ఙ	ሺܽ௜,ఙ

ற ሻ represents annihilation (creation) operator at site i with spin projection	ߪ ൌ ሼെ1, 0, 1ሽ, number operator 

ො݊௜,ఙ ൌ ܽ௜,ఙ
ற ܽ௜,ఙ and ො݊௜ ൌ ∑ ො݊௜,ఙఙ . Spin operator ܨԦ௜ ൌ ൫ܨ௜

௫, ௜ܨ
௬, ௜ܨ

௭൯ where ܨ௜
ఈ ൌ ∑ ܽ௜,ఙ

ற
ఙ,ఙᇱ ܵఙ,ఙᇱఈ ܽ௜,ఙᇱ with ߙ ൌ ,ݔ ,ݕ  ݖ

and ܵఙ,ఙᇲ
ఈ  are standard spin-1 matrices. Spin independent (dependent) interaction ܷ଴ሺ ଶܷሻ arises due to the 

difference in the scattering length ܽ଴ and ܽଶ in the spin S=0 and S=2 channels respectively. The spin dependent 
interaction ܷଶ can be positive (anti-ferromagnetic) or negative (ferromagnetic) depending on the values of ܽ଴ and 
ܽଶ	[5]. The site dependent chemical potential ߤ௜ ൌ ߤ ൅ ሺെ1ሻ௜ߜ where ߤ controls the bosons density and ߜ is the 
shift in energy due to superlattice potential. Here, we consider a bi-chromatic superlattice and thus, the whole 
lattice is bipartite into A and B sub-lattices with ߤ஺ ൌ ߤ ൅ ஻ߤ	and ߜ ൌ ߤ െ  .ߜ
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In the cluster mean-field theory [8], the entire lattice is divided into clusters with ஼ܰ number of sites. In this 
calculation we take ஼ܰ ൌ 2 and thus, each cluster consists of one site each from A and B sub-lattices. Decoupling 
each cluster from its nearest neighbor clusters using standard mean-field procedure [6,8,9], the model (1) is given 
by 

࣢ ൌ ෍ ࣢஼

௖௟௨௦௧௘௥௦

 

࣢஼ ൌ െݐ෍൫ܽ஺,ఙ
ற ܽ஻,ఙ ൅ ܽ஻,ఙ

ற ܽ஺,ఙ൯
ఙ

െ ෍ൣ൫ܽ஺,ఙݐ3	
ற ൅ ܽ஺,ఙ൯߰஻,ఙ ൅ ൫ܽ஻,ఙ

ற ൅ ܽ஻,ఙ൯߰஺,ఙ െ 2߰஺,ఙ߰஻,ఙ൧
ఙ

 

                        ൅௎బ
ଶ
∑ ො݊௜ሺ ො݊௜ െ 1ሻ௜ୀ஺,஻ ൅	௎మ

ଶ
∑ ሺܨԦ௜

ଶ െ 2 ො݊௜ሻ௜ୀ஺,஻ െ ∑ ൫ߤ஺ ො݊஺,ఙ ൅ ஻ߤ ො݊஻,ఙ൯ఙ .                                       (2) 

 
Here ߰஺,ఙ ൌ 〈ܽ஺,ఙ〉	൫߰஻,ఙ ൌ 〈ܽ஻,ఙ〉൯ is the A (B) sub-lattice superfluid order parameter with spin component	ߪ. 
We determine ߰஺,ఙ	and	߰஻,ఙ self-consistently using the method described in Ref. [8]. Sub-lattice superfluid 

densities	ߩ஺ሺ஻ሻ
ௌ ൌ ∑ ห߰஺ሺ஻ሻ,ఙห

ଶ
ఙ and densities of bosons	ߩ஺ሺ஻ሻ ൌ 〈 ො݊஺ሺ஻ሻ〉 are calculated from this self-consistently 

determined ground state. We also calculate the average density of bosons ߩ ൌ ଵ

ଶ
ሺߩ஺ ൅  ஻ሻ and the density waveߩ

order parameter	ܱ஽ௐ ൌ ஺ߩ| െ  ஻|. We can characterize the ground state of model (1) from these quantities. Theߩ
ground state is a superfluid (Mott insulator) if ߩ஺ሺ஻ሻ

ௌ  is non-zero (zero). The magnetic properties of the superfluid 

and Mott insulator phases are determined from Nematic order parameter ܳ஺ሺ஻ሻ
ఈ,ఈ ൌ 〈ቀܨ஺ሺ஻ሻ

ఈ ஺ሺ஻ሻܨ
ఈ െ ଵ

ଷ
Ԧ஺ሺ஻ሻܨ〉

ଶ 〉ቁ〉[10] 

and singlet pair density		ߩ஺ሺ஻ሻ
ௌ஽ ൌ መ஺ሺ஻ሻܣ〉

ற ෡஺ሺ஻ሻܣ	መ஺ሺ஻ሻ〉, where the singlet creation operatorܣ
ற ൌ ൫2ܽ஺ሺ஻ሻ,ଵ

ற ܽ஺ሺ஻ሻ,ିଵ
ற െ

ܽ஺ሺ஻ሻ,଴
ற ܽ஺ሺ஻ሻ,଴

ற ൯. In addition to these quantities, we also investigate entanglement properties [10] of different ground 

states by calculating Rényi entanglement entropy (EE) [11] given by ܵଶሾܣሺܤሻሿ ൌ െ݈݃݋ ቀܶݎ൫ߩ஺ሺ஻ሻ
ଶ ൯ቁ where ߩ஺ሺ஻ሻ 

is the reduced density matrix for sub-lattice A (B). 
 

RESULTS 

We now present the results of the Cluster Mean Field Theory applied to 2-dimensional spin-1 Bose Hubbard 
model in bi-chromatic superlattice, with cluster size ஼ܰ ൌ 2. Here we restrict ourselves to the anti-ferromagnetic 
case	ܷଶ ൐ 0. We set our energy scale by choosing t=1 and thus all parameters are dimensionless. It is known from 
the earlier studies that, for the anti-ferromagnetic case (ܷଶ ൐ 0), the symmetry the superfluid phase is polar (PSF) 
[8] and in the mean-field level symmetry restricts values of the superfluid order parameters such that 
either		߰஺ሺ஻ሻ,ଵ ൌ ߰஺ሺ஻ሻ,ିଵ 	് 	0, ߰஺ሺ஻ሻ,଴ ൌ 0 or  ߰஺ሺ஻ሻ,ଵ ൌ ߰஺ሺ஻ሻ,ିଵ ൌ 0 and  ߰஺ሺ஻ሻ,଴ 	് 0 [8]. Superfluid order 
parameters are plotted in the Fig. 1(a) for ܷ଴ ൌ 30, ܷଶ ൌ 0.03ܷ଴ and superlattice potential	ߜ ൌ 6. It is evident 
from the Fig. 1(a) that the superfluid phases have polar symmetry: we find  ߰஺ሺ஻ሻ,ଵ ൌ ߰஺ሺ஻ሻ,ିଵ 	് 	0 and ߰஺ሺ஻ሻ,଴ ൌ
0 and thus, superlattice potential do not change this symmetry. There are four regions in the chemical potentials 
where ߰஺ሺ஻ሻ,ఙ ൌ 0 thus, correspond to four insulator phases. The sublattice bosons densities ߩ஺ and	ߩ஻, the 

average boson density ߷ ൌ ଵ

ଶ
ሺߩ஺ ൅  .are plotted in the Fig. 1(b)	and the density wave order parameter ܱ஽ௐ		஻ሻߩ

The four insulator regions have average densities ߩ ൌ
ଵ

ଶ
, 1,

ଷ

ଶ
 and 2 with sublattice densities ሺߩ஺, ஻ሻߩ ൌ

ሺ1, 0ሻ, ሺ1, 1ሻ, ሺ2, 1ሻ	and (2, 2), respectively. Insulators with the density ߩ ൌ 1	and 2 are the normal Mott insulators 

where the density is uniform across whole lattice and		ܱ஽ௐ ൌ 0. However, insulators with 	ߩ ൌ ଵ

ଶ
	 and 	ଷ

ଶ
		have 

finite ܱ஽ௐ and are called density wave insulators. Thus, the superlattice potential introduces additional insulator 
phases with half-integer bosons densities. The sublattice bosons densities with different spin component	ߩ஺ሺ஻ሻ,ఙ 
are plotted in the Fig. 1(c). In general, we find ߩ஺ሺ஻ሻ,േଵ ൐  ሺ஺,஻ሻ,଴ except in the Mott insulator region, i.e., forߩ
ߩ ൌ 1	and 2, we find		ߩ஺,േଵ ൌ ஺,଴ߩ ൌ ஻,േଵߩ ൌ  . It should be noted here that the symmetry of the polar	஻,଴ߩ
superfluid phase is such that ߰஺ሺ஻ሻ,ଵ ൌ ߰஺ሺ஻ሻ,ିଵ 	് 	0 and ߰஺ሺ஻ሻ,଴ ൌ 0. This imply that the bosons with spin 
component ߪ ൌ 0, though present in the system are not in the superfluid phase. Only bosons with spin component 
ߪ ൌ േ1 form superfluid. This leads to a situation where we have a two-fluid model with bosons with ߪ ൌ േ1 are 
in superfluid phase while bosons with ߪ ൌ 0 are in the normal fluid phase. Magnetic properties of the superfluid 
and the insulating phases are given in the Fig. 1(d) where we plot Nematic order parameter		ܳ஺ሺ஻ሻ

௭,௭  and singlet pair 

density	ߩ஺ሺ஻ሻ
ௌ஽ . We find that density ߩ ൌ 2 Mott insulator phase is a singlet phase with 	ߩ஺

ௌ஽ ൌ ஻ߩ
ௌ஽ ൌ 1	and		ܳ஺

௭,௭ ൌ
ܳ஻
௭,௭ ൌ 0. The density ߩ ൌ 1 Mott insulator phase, however, is nematic ܳ஺

௭,௭ ൌ ܳ஻
௭,௭ ൐ 0 and ߩ஺

ௌ஽ ൌ ஻ߩ
ௌ஽ ൌ 0. In 
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ߩ	 ൌ ଵ

ଶ
	 density wave insulator, the sublattice boson densities are		ሺߩ஺, ஻ሻߩ ൌ ሺ1,0ሻ. In this phase we find		ܳ஺

௭,௭ ൐

0,	ܳ஻
௭,௭ ൌ 0 and		ߩ஺

ௌ஽ ൌ ஻ߩ
ௌ஽ ൌ 0. In the ߩ ൌ ଷ

ଶ
 density wave insulator, however, ܳ஻

௭,௭ ൐ 0,	ܳ஺
௭,௭ ൌ 0 and ߩ஺

ௌ஽ ൌ 1,

஻ߩ
ௌ஽ ൌ 0. So, in the ߩ ൌ ଷ

ଶ
 density wave insulator, A-sublattice is in the singlet phase and B-sublattice is in the 

nematic phase, whereas in the ߩ ൌ ଵ

ଶ
 density wave insulator, A-sublattice is in the nematic phase. We present the 

results for Rényi EE in Fig. 2. In general, we find ܵଶሾܣሿ ൌ ܵଶሾܤሿ and are very small except in the ߩ ൌ 1 Mott 
insulator where ܵଶ	is two orders of magnitude larger. ܵଶ is constant in insulating phases and vary with chemical 
potential in polar superfluid phases.   
 
We plot the phase diagram of model (1) for ߜ ൌ 6 and 10 in Fig. 3(a) and (b) respectively. There are four 
insulating phases represented by lobes. The dotted lines represent phase diagram for ߜ ൌ 0 where there are only 
two lobes correspond to ߩ ൌ 1 and 2 Mott insulator phases. As we introduce the superlattice potential, these two 

Mott phases shrink and two additional density wave insulating phases form with average density	ߩ ൌ ଵ

ଶ
 and  

ଷ

ଶ
. We 

also observed that these density wave insulator lobes enlarge with superlattice potential.  
 

 

FIGURE 1. (Colour online) (a) Superfluid order parameters, (b) densities and density wave order parameters, (c) densities 
with spin component ߪ and (d) nematic order and singlet pair density are plotted as a function of chemical potential µ for 
଴ܷ ൌ 30, ଶܷ ൌ 0.03 ଴ܷ and ߜ ൌ 6.  

 
 

FIGURE 2. (Colour online) Rényi EE		ܵଶ	and superfluid density ߩௌ	are plotted as a function of chemical potential µ for 
U0=30, U2=0.03U0 and δ=6. 
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CONCLUSION 

In our present work, we use the cluster mean field theory to study the behavior of spin-1 bosons in the optical 
superlattices. Since intra-site fluctuations are treated exactly in CMFT, it permits us to study the magnetic and the 
superfluid properties of the system simultaneously. Our investigation primarily focused on the anti ferromagnetic 
case (ܷଶ ൐ 0). We conclude that, in bi-chromatic superlattices, the introduction of superlattice potential favours 
the localisation of the bosons and this leads to density wave Mott insulators. When		ߜ ൌ 0, we have uniform 
superfluid and Mott insulator phases. As ߜ increases, the uniform Mott insulator lobes shrink while the half 
integer density wave insulator lobes enlarge. The symmetry of the superfluid phase remains unaffected by the 
superlattice potential. We have also studied the magnetic properties of insulating phases as well as calculated 
Rényi EE. We found that the ߩ ൌ 1 Mott lobe is nematic, and ߩ ൌ 2 lobe a singlet. The magnetic property of the 
density wave insulator, however, depends on the sub-lattice density. Rényi EE remains mostly small except at 
density ߩ ൌ 1 Mott insulator and could be used as a marker of the transition. 

 

FIGURE 3. (Colour online) Phase diagram of model (1) for (a) ߜ ൌ 6 and (b) ߜ ൌ 10. The coloured lobes are insulating 
phases and rest of the region is polar superfluid. The dashed line represent the phase diagram for ߜ ൌ 0. 
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